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I

The nature of volume diffusion during metamorphism may be studied by examining
compositional zoning in metamorphic minerals. Garnets with sharp optical zones and
internal fabrics related to deformation are of special interest, because they provide
a link between partitioning by growth and by diffusion.

Diffusion in the almandine-rich garnets of pelitic schists involves, at the very
least, the migration of four ionic components (Fe**, Mn?**, Mg?* and Ca?*).
Because of the possible occurrence of uphill diffusion and other phenomena we do not
intuitively associate with diffusion, the search for evidence of volume diffusion must
be preceded by a careful theoretical and experimental examination of diffusion in
multicomponent minerals.

The theoretical and experimental investigation of diffusion in silicates may be
simplified by: (1) the choice of ions as components in the flux equations; (2) the
construction of lattice-fixed reference frames to reduce the number of flux equations
and diffusion coefficients.

Flux equations are developed specifically for diffusion via ionized vacancies, but they
may be easily modified to treat diffusion via neutral vacancies or by one to one
exchange of ions. Methods are presented for solving the flux equations under the
constraint that the crystal remain electrically neutral during diffusion.

The transition-state theory of Lane & Kirkaldy (1964), which allows the calculation
of the matrix of chemical diffusion coefficients from the mobility of individual ions,
is adapted to the particular lattice-fixed frames developed here.
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INTRODUCTION

We may divide diffusion processes during metamorphism into intergranular diffusion and
volume diffusion. At very low grades of metamorphism, or during metasomatism, a con-
tinuous, interstitial fluid may be present. Except in unusual circumstances, however, the
dimensions of the pores and channels occupied by the fluid may be expected to be small and
surface effects at the liquid—solid contact will influence the properties of the interstitial fluid.
Thus diffusion in the interstitial fluid may be very different to that in a bulk fluid of the kind
in which experiments are normally conducted, and in which surface effects are carefully
excluded or minimized. At higher metamorphic grades, there is no textural evidence for the
existence of an interstitial fluid. At least at the stage of evolution recorded by the texture,
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intergranular diffusion proceeded along coherent grain boundaries.

SOCIETY

Intergranular diffusion presents very difficult theoretical and experimental problems

THE ROYAL A

(Fisher & Elliot 1974), especially in aggregates composed of a number of phases sharing three
or more components. There may be some advantage in attempting to treat some kinds of
intergranular diffusion as volume diffusion in a particular phase with well-defined properties.
For example, diffusion in an interstitial fluid might be considered as volume diffusion in a
fluid whose properties are determined not only by temperature, pressure and composition, but
also by geometric factors and surface effects. By examining the influence of surface effects on
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the mobility of individual ions, it may be possible to approximate diffusion in the interstitial
fluid by suitable modification of theories developed for diffusion in bulk fluids. Kinetic theories,
one example of which is discussed in a later section of this paper, appear to be of particular
significance in this connexion.

By introducing the concept of a dividing surface (Gibbs 1873), it is possible to assign thermo-
dynamic functions to grain boundaries. Physically then, grain boundaries may be treated as
a continuum in the same fashion as interconnected pores in sediments have been analysed by
Bear (1972). But, in contrast to the previous case, where the bulk fluid might be envisaged as
a reference system for the description of diffusion in the interstitial fluid, the choice of a reference
system is not as evident.

Evidently, a geometric factor must appear in the diffusion equations to account for non-linear
paths. Where diffusion occurs along boundaries between phases in which the diffusion com-
ponents are essentially insoluble (e.g. Fe, Ca, etc. along quartz—quartz boundaries), a tor-
tuosity tensor may be defined in a straight forward way (Bear 1972). In contrast, where
components may cross the boundaries of the continuum, the formal definition of the tortuosity
tensor becomes complicated.

With the definition of a continuum with well-defined thermodynamic properties at each
point, interstitial diffusion may be broken up into: (1) volume diffusion along concentration
gradients within and parallel to the boundaries of the continuum; (2) the non-equilibrium
transfer of material across the boundaries of the continuum.

During metamorphism, volume diffusion acts to homogenize individual grains; interstitial
and volume diffusion act to create domains of local chemical equilibrium among minerals that
share mutually soluble elements. With the electron microprobe, we may hope to decipher some-
thing of the magnitude and role of each process. In general, both processes will involve the
diffusion of three or more species— that is multicomponent diffusion. A complete formal
analysis of multicomponent diffusion, drawing on non-equilibrium thermodynamics, was
initiated by Onsager in 1945. An elegant and lucid treatment, incorporating developments
between 1945 and 1960, has been given by de Groot & Mazur (1962). Binary diffusion may be
treated with some advantage as a special case of multicomponent diffusion.

The analysis of volume diffusion in metamorphic minerals presents three problems: (1)
Adaptation of the present theory to deal specifically with silicates. There are important dif-
ferences between diffusion in silicates and diffusion in metals and aqueous electrolytes where
most experimental and theoretical work has been concentrated; (2) Construction of analytical
or approximate theories to reduce the burden of experimental work. This problem is common
to multi-component diffusion in metals, glasses, aqueous electrolytes, etc., but assumes a special
importance in silicates. Direct measurement of diffusion coefficients in four component systems
such as metamorphic garnets may be technically impossible. The petrologist is also faced with
the additional problems of a limited supply of natural or synthetic materials and experiments
of long duration; (3) Last, and perhaps most importantly, is a systematic search for the nature
and magnitude of diffusion in metamorphic rocks. Without a complete theoretical and experi-
mental understanding of multicomponent diffusion in silicates, we may easily overlook the
effects of diffusion in rocks. The creation or maintenance of discontinuities in chemical com-
position, or the transport of material from regions of low to high concentration, are not
phenomena we intuitively associate with diffusion. Yet experimental work has documented
these phenomena in metals and glasses. Excellent examples of ‘uphill’ diffusion — the diffusion
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of a component up its own concentration gradient —have been given by Cooper (1974) in
silicate glasses (see also Darken 1951).

The theoretical analysis of diffusion in silicates reduces to the problem of constructing a set
of lattice-fixed reference frames, in which the conditions of electrical neutrality may be imposed
(Anderson & Buckley 1974). It is the purpose of this paper to show that the treatment of de
Groot & Mazur (1962) may be extended in a simple and natural way to solve this problem.
A modified version of the transition-state theory of Lane & Kirkaldy (1964) to fit the lattice-
fixed reference frames developed here is also presented.

Although the discussion below is restricted to volume diffusion, it may serve to illuminate
some of the theoretical and experimental problems inherent in the analysis of intergranular
diffusion in multicomponent aggregates. The model of Lane & Kirkaldy (1964) has been
employed with slight modification to approximate diffusion coefficients in aqueous electro-
lytes with significant success (Lane & Kirkaldy 19635, 1966; Miller 1967a).

To illustrate various arguments, reference is made to diffusion in a garnet with the ideal
composition (Fe?t, Ca, Mn?*, Mg);Al,SigO,,. Deviations from this stoichiometric composition,
associated with the presence of point defects, are considered in later sections of the paper. The
arguments themselves, however, are perfectly general and applicable to diffusion in any ionic
or partially ionic crystal of two or more components.

DIFFUSION FLUXES

A diffusion flux is, by definition, the amount of material crossing unit area of a plane per unit
of time. The reference plane may be attached to the local centre of volume, the local centre of
mass, a particular species, etc. Thus the fluxes are described wth respect to a set of Galilean
coordinate systems, each moving with a different velocity »® relative to an arbitrary, external
coordinate system (for example, the walls of a diffusion cell in an experiment with liquids
constitute an external cordinate system; Kirkwood et al. 1960). For simplicity of notation, all
equations are written in one-dimensional form. Thus * is the component of the velocity parallel
to the axis of diffusion. Subscripts attached to a component of a vector quantity (e.g. v; or vy)
refer to the chemical components of the solution.

The flux J; of species ¢, moving with a mean velocity v, is defined as (in a particular reference
frame @, and for molar fluxes),

J¥ =c¢v;—v®) (1=1,2,...,n), (1)

where ¢; is the molar concentration of 7. The reference velocities v* for various reference frames
are defined by

n

Ve = .21 A Vg (2)

=

where the weighing factors a; are subject to the normalization condition
n
> oa; = 1. (3)
i=1

Weighing factors and reference velocities for different reference frames are given in de Groot
& Mazur (1962, p. 240) for mass fluxes and for molar fluxes in Haase (1969, p. 218). For mass
fluxes, the partial density of ¢ replaces the molar concentration ¢; in (1).

16-2
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Throughout this paper, diffusion is considered in an isobaric, isothermal system of # com-
ponents (1, 2, ...,n) in the absence of applied fields. From the linear form of the entropy
production due to diffusion, we may infer the n— 1 independent flux equations (de Groot &
Mazur 1962)

n—1
Jo= 3 I%X: (i =1,2 ..,n-1), (4)
i=1
where the independent thermodynamic forces are
n—1
a =—zz~:1 Ay grad p, (k=1,2,..,n-1). (5)

Here 4, is the chemical potential of component / at constant 7, P and C, (k # 1); then—1
dimensional matrix A% is
a; Gy

Ay = 5kz+;l; c,

(k1 =1,2 ...,n—1), (6)

(84; = Kronecker function.)

The LY, in (4) are, in the terminology of non-equilibrium thermodynamics, phenomenological
coefficients. They are in fact diffusion coeflicients related to gradients in chemical potentials;
as such they may be contrasted with practical diffusion coeflicients (Kirkwood et al. 1960) which
are related to concentration gradients. If, for garnet, we choose simple ionic components
(Fex*, A3+, Si%t, etc.), (4) expands to six flux equations containing thirty-six phenomenological
coefficients. However, if the flux equations are written correctly, the Onsager reciprocal
relations (Onsager 1945)

Ly = L% (,k=1,2,...,n—1) (7)

may be used to reduce the number of independent coefficients to 21.

LATTICE-FIXED REFERENCE FRAMES

Diffusion in silicates occurs on a number of sub-lattices (in the literature on diffusion, the
term lattice is used in a general way to denote arrays of structural sites in a crystal. Although
connected, this usage differs from the more abstract notion of a lattice in crystallography).
For example, in garnets, we may envisage a series of cation sub-lattices defined separately by
the dodecahedral, octahedral and tetrahedral sites and an anion sub-lattice composed of the
oxygen sites. In many instances it is possible, and convenient, to combine some of the cation
sub-lattices and the oxygen sub-lattice to form a complex anion sub-lattice Al,Si;O%; . The
number of independent phenomenological coeflicients may be drastically reduced by this
device.

For a lattice-fixed reference frame, the velocity »* may be taken as either the average
velocity of lattice points, or as the average velocity of a particular species that is more or less
fixed relative to the lattice (Haase 1969, p. 221). There appears to be no simple method of defin-
ing weighing factors for the first alternative. On the other hand, the choice of the velocity of
a particular species as a reference velocity is a common practice in the analysis of diffusion in
liquids. The species chosen is generally the solvent in liquids (solvent-fixed frame), although
the formal treatment holds for any species. The weighing factors are the Kronecker func-
tion d;, where n denotes the solvent species. Of the various reference frames that appear
in the treatment of multicomponent diffusion, the solvent-fixed frame is perhaps the most
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fundamental. Where the migration of charged species is involved, the flux equations must contain
not only chemical potential gradients, but also electrical potential gradients. In the absence of
applied electromagnetic fields, the electrical potential gradient must disappear at each point.
The constraint of local electrical neutrality can only be rigorously applied in reference frames
— such as the solvent-fixed reference frame — in which the reference velocity can be set equal to
zero (de Groot & Mazur 1962, Ch. 13).

In simple compounds such as alkali halides with one cation and one anion sub-lattice, it is
reasonable to assume that cations and anions are confined during diffusion to their own sub-
lattices (Howard & Lidiard 1964). With this assumption, cross terms involving cations and
anions (e.g. L%, where 7 is a cation and £ an anion) may be dropped from the flux equations,
reducing the number of independent coeflicients. A similar assumption may be applied to the
various cation sub-lattices and the oxygen sub-lattice in silicates. The situation, however, is
more complex with respect to interaction between a single cation sub-lattice and a complex
anion sub-lattice. Indeed, there is no point in attempting to establish a complex anion sub-
lattice, if diffusion proceeds by direct interaction between different cation sub-lattices. For
example in garnets, an Al,Si;O%; sub-lattice is only valid if the Ca, Fe, Mn or Mg ions do not
occupy during diffusion, even as an intermediate step, octahedral or tetrahedral sites. Were
such direct interaction between sub-lattices to occur, diffusion on one sub-lattice may be
influenced by the concentration or rate of migration of defects on the other sub-lattice. The
conditions of electrical neutrality become more difficult to apply in these circumstances.

To combine sub-lattices in a useful way, we need some knowledge of actual diffusion mechan-
isms. Even without this specific information however, we may infer some general constraints
on the interaction between different cation sub-lattices. It appears unlikely that diffusion in
silicates, and in pai‘ticular those with a close-packed oxygen structure, can proceed by direct
interchange of cations on the same or different sub-lattices: vacancy or interstitial mechanisms
of diffusion are much more probable (Anderson & Buckley 1974). Although the possibility
cannot be entirely dismissed, it also seems unlikely that diffusion of a cation on one sub-lattice
can proceed to any extent via vacancies on another cation sub-lattice. This would appear to
be especially so, if the transfer from one sub-lattice to another violates the general rules of ionic
substitution. The temporary transfer of a Ca, Fe, or Mg ion to the tetrahedral sub-lattice clearly
violates these rules. On the other hand, the same ions might conceivably occupy a vacant octa-
hedral site as an activated state in a diffusion step. Then, however, a complex ring mechanism,
with a correspondingly high activation energy, is required to complete the diffusion step
(Anderson & Buckley 1974, p. 46). Experience in oxides, of which silicates may be considered
a special example, favours diffusion via a simple vacancy mechanism.

To establish a lattice-fixed reference frame, we set the local velocity of the anion sub-lattice
to zero (i.e. Jo = 0) and measure the velocity of other species relative to this as a reference
velocity. The greater the number of components that can be included in the anion sub-lattice,
the simpler the flux equations. The choice of an AlSi;Of; sub-lattice in garnets, reduces the
number of flux equations to 4 and the number of phenomenological coefficients to 16, or 9 if
the Onsager reciprocal relations hold. The only interaction between the dodecahedral and com-
plex anion sub-lattices is an indirect electrical coupling that balances the space charge on each
sub-lattice.

Because of changes of unit cell dimensions with composition during diffusion, elements
of the anion sub-lattice would appear to move during diffusion with different velocities
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to an observer located at a fixed point outside of the diffusion zone. When we measure
concentration profiles in either experimental diffusion couples or natural crystals, we are
imposing an arbitrary (fixed) coordinate system. That is, we are acting as a fixed observer at
a single, frozen instant in the history of the system. The relationship between diffusion
coefficients determined in the fixed coordinate system and volume-fixed or solvent-fixed coefli-
cients has been investigated by Kirkwood ef al. (1960) among others (see also Crank 1956).

It should be stressed that it is the local velocity of the solvent species that is set to zero. To
a fixed observer, the flow of material across a fixed plane is made up of bulk (convective) flow
and a diffusive flow (the carefully drawn analogy of Darken (1948) still provides the best
explanation of this point). By attaching the reference plane to the solvent species at each point,
the bulk motion is eliminated from (4). The bulk flow, in the absence of non-hydrostatic
stresses, results from volume changes throughout the system (due to non-ideal mixing).

IoNIiC AND MOLECULAR FLUXES

Fick’s first law for multicomponent solutions is (Onsager 1945)
Jb =% D% kfox (i=1,2,..,0), (8)
k=1

where y;, is a compositional parameter (partial mass density, partial molar concentration, mole
fraction, etc.). The Dy, are chemical diffusions coefficients relating diffusion fluxes to concen-
tration gradients rather than chemical potential gradients. Relationships between the
phenomenological coefficients of (4) and the D, of (8) are developed in Kirkwood et al. (1960),
Fitts (1962), de Groot & Mazur (1962) and Haase (1969). Restrictions on the solution of (8)
related to the partial molar volumes of the components, and the nature of the diffusion
coefficients found, have been thoroughly discussed by Kirkwood et al. (1960) and Trimble
et al. (1965).

For solutions in which the molar volume is a linear function of concentration, (8) yields
diffusion coeflicients in a volume-fixed reference frame (¢ = v). Diffusion coefficients in other
reference frames must be obtained by systematic transformation of the volume-fixed diffusion
coefficients — except that molecular and volume-fixed diffusion coeflicients are equal in binary
systems (Trimble ¢t al. 1965), or in systems of three or more components if the partial molar
volumes of all components are equal.

Concentration gradients, and not chemical potential gradients, are directly measurable.
Thus Fick’s law appears in the solution of practical problems, either in the calculation of
diffusion coeflicients from concentration against distance curves, or the calculation of con-
centration curves from known diffusion coefficients. The phenomenological coefficients are
only important in the theoretical analysis of diffusion.

It is always possible to remove one flux equation from (8) (Onsager 1945), reducing the
number of independent diffusion coefficients. The matrix D3, is not symmetric.

The n components in (8) may be taken as elements, oxides or molecular components. Clearly
n is minimized by the selection of molecular components, for example, the end-members
almandine, grossular, spessartine and pyrope, for the ideal garnet proposed in the introduction.
As noted below, with the presence of ferric ion, point defects and impurities, the actual
number of components will normally be more than four.
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There are (n—1)? independent diffusion coefficients in (8) for a system of n components.
If, as is generally true, the chemical diffusion coeflicients are dependent on concentrations, then
(n—1) chemical diffusion experiments are needed to determine all of the independent coefhi-
cients (Duda & Vrentas 1956) at one particular composition (for a fixed temperature and
pressure and, in systems containing transition-state metals, a fixed oxygen fugacity). Thus in
a quaternary system, we need three diffusion couples with six different terminal compositions.
Furthermore, the diffusion paths in the three couples must intersect at a single point in a three
dimensional (compositional) space: the (n—1)? independent diffusion coeflicients are
uniquely determined only at this single point. Because diffusion paths are not predictable ab
initium, and may be strongly curved, chemical diffusion experiments in quaternary systems
are, to all intents and purposes, impossible. Even in ternary systems, where couples of any
composition may be readily synthesized, the experimenter is faced with a prolonged task.
Consequently, a great deal of attention has been devoted to connecting chemical diffusion
coeflicients to the diffusion coeflicients of individual ions measured with radioactive isotopes.
Whether we are interested in solving (8) for elements, oxides or molecules as components, the
problem is to calculate the compositionally dependent D, from tracer diffusion coefficients of
ions measured at one or more particular compositions of the crystalline solutions. With the
appearance of ions in the flux equations, account must be taken of diffusion potentials.

In the absence of externally imposed electrical gradients, the diffusion potential (Haase
1969, p. 291) may be thought of as a virtual electrical field that acts to keep the crystal elec-
trically neutral. Where diffusion occurs by a one to one interchange of ions of the same
valence (sign and magnitude), the preservation of electrical neutrality is automatic. Where,
however, diffusion proceeds by a vacancy or interstitial mechanism (Shewmon 1963; Swalin
1972), or involves ions of different valences, the motions of individual ions must be con-
strained: any tendency for ions to migrate in a manner such as to create a local electrical field
is immediately countered by the same electric field (the diffusion potential). Therefore, although
the intrinsic rate of migration of individual ions may be very different, their motions are coupled
to prevent the creation of electrical gradients in the crystal.

The condition of electrical neutrality is imposed by adding an additional term to (4) (de Groot
& Mazur 1962, Ch. 13),

n—1
Tt == 3 B (Oufox 3, F0g[0x) (i = 1,2, .., n—1), (9)
Jo=

where ¢ is the diffusion potential in volts (3, is the signed valence of the & the ion and F the
Faraday). The set of n—1 equations (9) are then solved simultaneously so that 0¢/0x is always
zero. A solution of this problem has been given by Miller (19674, #) for aqueous electrolytes
with a common anion in a neutral solvent. A similar derivation for solutions composed entirely
of ionic components is proposed below.

There is a further important problem. As written, (9) contains the chemical potentials of
ionic species. Although the chemical potential of an ion may be assigned a physical meaning,
it is not in principle, a measurable quantity (Denbigh 1966, p. 303). Attempts have been made
to write (9) in terms of ionic concentrations rather than chemical potentials (Sundheim 1957).
Concentrations, however, are not intensive thermodynamic quantities; because both (4) and (9)
are inferred from non-equilibrium thermodynamics, chemical potentials — which are thermo-
dynamic quantities — must appear in the initial equations. The relation between chemical
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potentials and concentrations always assumes an equation of state: no analytical relation is
prescribed by thermodynamics.

In contrast, the chemical potential of a neutral component is indirectly measurable or may
be calculated from standard thermodynamic data. During the solution of (9), the chemical
potentials of ions must therefore be replaced by the chemical potentials of neutral components.

Ions may not be the only components that must appear in (9). Experience with simple metal
oxides has revealed that vacancies may play a fundamental role in diffusion; vacancy diffusion
must be reckoned a strong possibility in silicates. Whether the vacancies are neutral or ionized,
they must appear in the solution of (9). For completeness, solutions of (9) and modification of
the Lane & Kirkaldy model are developed for a vacancy mechanism of diffusion. All of the
derivations outlined are easily simplified to treat exchange or interstitial diffusion.

PoOINT DEFECTS

For a vacancy mechanism of diffusion, the flow of ions in one direction is balanced by a flow
of vacancies in the opposite direction. The vacancies appear as a separate component in the
diffusion equations and in the kinetic equations of Lane & Kirkaly (1964). The original deriva-
tion of Lane & Kirkaldy makes use of the fact that, at thermal equilibrium the chemical poten-
tial of vacancies in metals is zero. This condition is rarely true in partially ionic or strongly ionic
compounds where vacancies are normally ionized (Howard & Lidiard 1964).

The nature and concentration of point defects in a compound depend on equilibrium with
external phases. By considering defects as dilute chemical components in solution, we may
write chemical equations and compute equilibrium constants as we would for major com-
ponents (Swalin 1962; van Gool 1966). Other texts which discuss defects and their role in
diffusion include: Flynn 1972; Girifalco 1964, 1973; Manning 19684; Shewmon 1963. The list
of defects that might occur in any compound is almost endless, but, in practice, few defects
exert a significant influence on diffusion. Moreover, for a given set of external conditions, we
may expect one defect to dominate with respect to diffusion.

In ideally stoichiometric compounds, vacancies on a cation sub-lattice must be accompanied
by vacancies on the anion sub-lattice or interstitial cations to preserve electrical neutrality
(Swalin 1962). In non-stoichiometric compounds — that is all real materials — cation vacancies
may also be associated with aliovalent impurities or excess anions in the crystal. The latter
has proven to be especially important in transition metal oxides (Swalin 1962), where equili-
brium takes place with an oxygen-bearing gas. Buening & Buseck (1973) have demonstrated
that chemical diffusion coefficients in natural olivine are a function of oxygen fugacity. Their
results can be explained by the same medel that has been invoked, and verified by conductance
experiments, in many transition-metal oxides. Although experimental evidence is lacking,
there must be a strong suspicion that a similar mechanism may operate in many iron-rich sili-
cates (the almandine-rich garnets of pelitic schists, for example, may contain as much as
40 9, FeO and 1-10 % MnO). This model will be used to illustrate the discussion below, as it
also emphasizes the possible importance of external phases on volume diffusion. With suitable
changes, the argument could be applied to any defect that influences diffusion.

An excess of anions in a crystal may be formed by the reaction

10, (gas) = O (crystal) +V,
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where V is a neutral cation vacancy (alternatively, excess anions may be formed by placing
oxygen atoms in interstitial positions. This mechanism may be safely ignored in at least those
silicates with a close-packed oxygen structure). The neutral vacancies, by acting as acceptors,
may ionize once

V =V-4et
or twice V-4 V3 4 2e™,

where et is an electron hole in the valence band of the ion donating the electrons. In iron oxides
and olivine, the formation of doubly charged vacancies is associated with the oxidation of ferrous
to ferric ion.

The chemical potential of the doubly ionized vacancy (or any ionized vacancy) is not zero.
The equilibrium condition at constant temperature and pressure and composition of other

components is
by =0 = fiyo-+2e+ (10)

from the dissociation reaction V = V&4 2et,

JoNIC FLUXES IN A LATTICE-FIXED REFERENCE FRAME

To complete the definition of lattice-fixed reference frame, we now introduce new concentra-
tion and distance units. The distance x in 0¢;/0x or 0¢/0x in (9) cannot in general be measured
on a linear scale. To define x on a linear scale is to impose an external coordinate system that
only corresponds to a lattice-fixed reference frame if — as is rarely true in crystalline solutions —
unit cell dimensions are not a function of composition. To continue, it is assumed that lattice
parameters are indeed dependent on composition.

Fluxes measured relative to an external coordinate system (linear x) combine the diffusion
flux JF with a mass flow of 7. Similar problems appear in a rigorous definition of the term 0¢/0x.
A non-uniform space charge is associated with each sub-lattice in a crystal of variable composi-
tion. Identical gradients, however, appear in each sub-lattice, so that at each point, there
is no net electrical charge. But (9) is applied to one sub-lattice at a time — for example the
dodecahedral sub-lattice in garnet — without reference to other sub-lattices. The diffusion
potential is a virtual electrical field that is superimposed on the non-uniform space charge
associated with that particular sub-lattice. Thus, in the solution of (9), it is necessary to
eliminate the gradient of any electrical field that results solely from changes in unit cell dimen-
sions. This may be accomplished by a suitable choice of a nonlinear scale for x.

The most obvious choices of units are related to the unit cell (Birchenall et al. 1948; Kirkaldy
1957; Anderson & Buckley 1974) with concentration units defined as the number of atoms or
moles of ¢ per unit cell and the distance defined as the number of unit-cell edges parallel to .

Away from dislocations, internal and external surfaces, the number of structural sites in each
sub-lattice is conserved. Thus in the dodecahedral sub-lattice of garnets, the fluxes are restricted
by the condition

n—1 '
JE+JY = 0. (11)
)

K2

With (11), we may rewrite (9) as

TE = =S U (Suyfox — 0 [0%) + 3, F 0ox] (i = 1,2, oy n—1). (12)
k=1
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250 D. E. ANDERSON

The total electrical current on the dodecahedral sub-lattice due to diffusion is
n—1
I="Y 3,FJF+3,FJE =0, (13)
i=1

where 3, is the signed valence of a cation vacancy (3, = 0 for a neutral vacancy).
The vacancy flux may be eliminated between (11) and (13), to give

n—1
F'S, JH(3,-3,) = 0. (14)
1=1

By substituting in (14) from (12) for J£, solving for 9¢/0x and resubstituting in (12), we obtain
(Miller 19674, equations 23, 24, 25), for n = 4 for garnet,

4 4 4 Ot — -
33 T (33, lﬁlkl[gl Z m)_gj ( ,uv)]
JL = —]=1 k=11=1 ax ax

i F—"
2 X (Br—3)0u3,
k=111

(i=1,234), (15)

where the summations run over the four ionic components (Fe, Mg, Mn and Ca).
The chemical potentials of ionic and molecular species (u;,) are connected by (Miller

19674, b), Win = TiolbiFTintty (1 =1,2,...,n—1), (16)
where the 7, and r,, are stoichiometric coeflicients in the dissociation equation
Cri,4siy = 1:.C% 1y AP™, (17)
For garnets (17) has the form
FezAly(Si0,); = 3Fe?t + Al (Si0,)§- (18)

with 3n = —86.

Many exchange processes in silicates involve only ions of the same valence, for example the
mutual exchange of Fe?*, Mg?+ and Mn2+, or K+ and Na*, etc. Under these conditions (15),
may be considerably simplified for

31 =38, =..=3,—1 (19)
and Tie = Tog = oo = Tiu_er (20)
Therefore, — 3,(Op,[0x) + 3,;(Op,[0x) = O (21)
in (15), and 385/ 3x) — 3, (8 0x) = 3,(3p 0% — Opufox) (22)
which is zero for j = 1. By (16), the term in parenthesis on the right hand side of (22) becomes,
J# L Oty O — Oty 3 = (Ot — Oy O) [ (23)
for all combinations of j and /. Thus with (21), (22) and (23), (15) may be rearranged to give
4 4 4

2 X X lila(3r—3y) 3i[0p /0% — Op [ Ox]

JE = mlimliml (i =1,2,3,4). (24)
Tie 2 5 (3x=3y) ludy
k=11=1

Equation (24) relates the fluxes of ionic components, measured relative to anion sub-lattice, to
the chemical potentials of neutral components.
Equation (24) has the form

4
JE == 3 Li(omfo) (= 1,2,3,4).
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Here, the coefficient Lf;, say, gathers together all combinations of {Z coefficients that modify
(#0,/0x) in the expansion of (24) for i = 1. Even though (24) seems complex, expansion for
numerical calculation is rendered simple by the ordered pattern of IZ coefficients that
immediately appears.

The presence of vacancies adds an extra component to the ideal composition of a garnet
suggested in the introductory section. Analysis of diffusion in a garnet through (4) or (8) then
involves, with the choice of molecular components, four independent fluxes — the same number
of independent fluxes as in (24). Thus the choice of a lattice-fixed frame for ionic fluxes does not
lead to a reduction in the number of components, flux equations or diffusion coeflicients. It does,
however, allow us to connect diffusion to the mobility of individual ions without adding further
components (in this case, Al, Si and O).

For low concentrations of vacancies on the dodecahedral sub-lattice, it may be sufficient to
solve (24) for three of the four ion fluxes. The distribution of the fourth ionic component may
then be reduced from stoichiometry with acceptable accuracy. All summations on the right
hand side of (24), however, still run from one to four. Impurities that are not located on the
dodecahedral sub-lattice need not be inserted as separate components; only impurities or
defects that affect the stoichiometry of the dodecahedral sub-lattice needed be counted as com-
ponents. Similar remarks apply to the solution of (4) or (8) for molecular components,
although impurities and defects must be handled in a slightly different way.

APPROXIMATE CACULATION OF IONIGC FLUXES

Lane & Kirkaldy (1964) applied transition state theory (Darken & Gurry 1953) to the inter-
change of pairs of atoms on adjacent atomic planes to calculate diffusion fluxes. The activated
complex for diffusion in metals may be visualized as an atom in transit between its original site
and a vacant site. The diffusion step in silicates may include several intermediate steps and
a series of activated complexes. There is, however, in the form the theory is finally applied, no
loss of detail if the sequence of step is analysed in terms of a single activated complex (Anderson
& Buckley 1974).

Lane & Kirkaldy (1964) derive the kinetic equation for one dimensional diffusion (in a mole-
cular reference frame; a = m)

JP = =% kyaa,(0ufox—oufox) (i=1,2,..,n) (25)
FED)
: A2 [,
with by = W[TZ exp (—AG;’;/RT)] (26)

and where: A and N are the lattice spacing and number of moles per cubic centimetre of lattice
planes parallel to the x direction; v;; is the frequency of transitions forward through the activated
state (see Darken & Gurry 1953, footnote p. 470); AG} and v are respectively the Gibbs
energy of formation and the activity coefficient of the activated complex; and g; are activities.

The factor 108 is required to convert molar concentrations to mol/cm? to keep units consistent
in (25) (assuming 11 = 1000 cm?®).

Equation (25) describes diffusion by interchange of 7 and j atoms; by replacing species j with
a vacancy, and assuming only interchanges of atoms with vacancies contribute to diffusion, we

obtain T = —kiya,0,(0sf0n — 0 f0%) (i = 1,2, ..., ). (27)
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The terms in square brackets in (26) represent the probability P, that an ion will jump into an
adjacent vacancy. Hence, (26) may be written in the condensed form

kyw = ABPIN'RT (i =1,2,...,n). (28)
The fluxes J7* may be transferred to a lattice-fixed frame by (Kirkwood ez al. 1960)

JE = Jr+Cu, (29)
where # is the velocity of the molecular frame relative to the lattice-fixed frame by definition
JE=0=Jr+C,u
and u =-—J2[C,. (30)

Substitution for # in (29) and rearrangement gives

n—1 . |
TE =8 (ar) (=12, (31)

n

where the definition of a molecular reference frame
n—1
Ity Jp =0 (32)
k=1

(Haase 1969) for molar fluxes has been used.
Substitution for the J# in (31) from (27) yields

JE = _:Ei kkvaka,,(ﬁik—l-%) (O] 0% — QpofOx) (i = 1,2, ..., n—1). (33)

The last equation has the general form
JE = _Zii 1 (O Ox — 0, [0x) (6 = 1,2, ..., n—1) (34)
with = kkvakaq,(?iik+%) (t=1,2,..,n-1). (35)

Thus if the £, and the activities are known, the phenomenological coeflicients needed in (24)
may be calculated.

Approximate values for £;, may be obtained from isotope tracer diffusion data (Lane &
Kirkaldy 1964). Tracer diffusion experiments are usually performed such that the isotope is
a very dilute, component in an otherwise homogeneous material. At infinite dilution, all
reference frames become identical as volume changes of mixing go to zero. The flux of a
isotope of ¢ is (Lane & Kirkaly 1964)

Jim = =L (0u [0x) = — D™ (0xf™[0x). (36)

The tracer diffusion coefficient D™ is found experimentally from a plot of the concentration
of the isotope against depth after annealing.

For ideally dilute solutions du¥lox = (RT|x¥) (0x¥[0x) (37)
and with (36) i = D¥mx¥|RT. (38)
For isotope diffusion, (27) and (28) combine to give
A2
L——_— g SN
Ji - NZRT(az ava) (a/’Lz /ax) (39)

(0p,/0x = 0 in a homogeneous material; even though u, # 0). From (36), (38), and (39),
P¥ = Df N'[Ayia, (40)
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With the approximation P, = P, the k;, may be calculated. Note that it is not necessary to
know N, A, 0¥ or a, to calculate the [;; all of these terms are eliminated between (28) and (35).
The difference between P, and P reflects changes in v,,3v¥, and AG, with concentration. All
of these terms may be expected to depend on concentration; the proportion of different ions
around a vacancy influences the properties of the vacancy and the jump probabilities of ions
into the vacancy. The approximation is increasingly poor as the concentration of the solution
differ from that in which P¥ is determined. This trend has been confirmed in tests of the model
in aqueous electrolytes (Lane & Kirkaldy 1966). Even there, however, where the model might
be expected to perform more poorly than in crystals, reasonably accurate diffusion coefficients
are obtained over a moderate range of compositions (Lane & Kirkaldy 1966, 1967).

The approximation of P, does not remove the concentration dependence of the /f%. The
presence of a;, ¢; and ¢, in (35) provides the major portion of this dependency.

The approximations that replace P, with P} rob the model of all of its kinetic information. How-
ever, the model is extremely useful for keeping track of relationships, and it gives an intuitive
feel for diffusion processes that is absent from purely macroscopic models.

The derivation of (24) is consistent with the principles of non-equilibrium thermodynamics
and the L% should be symmetric. Trial calculations with estimated tracer diffusion coefficients
(Anderson & Buckley 1974) prove that the matrix L[, is indeed symmetric.

It appears that vacancy-wind and correlation effects (Manning 19684, b, 1974) may not be
adequately accounted for in the model of Lane & Kirkaldy (1964); see, however, comments
by Lane & Kirkaldy (1967).

These two effects have proven to be especially important in iron oxides and may prove to be
important in iron-bearing silicates. It may, perhaps, be argued that with the substitution of
P, for P¥, these effects have been included through the measurement of the tracer diffusion
coeflicient. It remains to evaluate how rapidly the approximation of P; by P deteriorates be-
cause of these effects.
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